Naples:life,death &
                Miracle contact: Jeff Matthews

revised entry: June 2010                    
added Popular Science 1872 item in Aug 2020


Recent Eruptions of Mt. Vesuvius & the Fountain of Spina Corona


Those are just clouds above the cone, but the folks who built the houses you see on the slopes of Vesuvius (photo, right) are obviously optimists, for the question is always, "Isn't it about time?" (Of course, you never ask that question aloud because that brings bad luck. Yes, your loud mouth might well cause the next one!)

Well, is it time? With all the pompous weight of scientific certainty, I can now say...uh, maybe. It is instructive to look at the recent history of eruptions for a clue. 'Recent' is relative. We can take the last 400 years or so because in geological terms that is but a heart-beat.

Working back from the present, the last eruption of Vesuvius was in March, 1944. It happened in full view of the Allied armies, which had taken the city of Naples a few months earlier. WWII was still raging farther north in Italy when Vesuvius went into what is called an effusive eruption (less violent than an explosive eruption, but nevertheless dangerous and potentially deadly). That eruption destroyed a number of nearby towns; the volcanic ash also rendered useless the planes of a U.S. B-25 bomber group parked at the Capodichino airport in Naples.) There are still a lot of people in Naples who remember that one, including at least one U.S. Army captain (still in Naples!), Herman Chanowitz, whose wartime memoirs are chronicled elsewhere in this encyclopedia.      [Also see this additional photo of Vesuvius during the 1944 eruption.)

Mt. Vesuvius, 1944 eruption. Photo: H. Chanowitz.
Photo restoration: Tana A. Churan-Davis.
Eruptions count as major or minor (and everything in between) depending on the extent to which they are explosive or effusive, how much ejecta they produce and the extent to which they change the profile of the volcano, blowing bits and pieces away, adding new craters, new lava flows, etc. Thus, the eruptions of 1929 and 1926 were minor, but they did, for example, add a few new craters and damage nearby structures. There was also geologic activity of a different nature near Naples in that period; a major earthquake struck the Irpinia region (i.e., near Avellino) on July 23, 1930, killing 1500 persons. (Earthquakes are not necessarily related to volcanism, but at least in this area, there is that possibility.) 


The eruption of April, 1906, was massive and attracted worldwide attention. (Indeed, for an unusual aside to the 1906 eruption, see The Wonderful Wizard of Chittenango.) It killed 100 persons and buried nearby towns. The initial rumblings, however, caused little alarm and locals joked that 'the mountain' was just preparing a royal welcome for British King Edward, due in Naples for a visit shortly. He made it just in time for an eruption that dropped the ridge on the main cone some 250 meters, according to Prof. Raffaele Vittorio Matteucci, the director of the Vesuvius observatory. The eruption covered the city of Naples, itself, with ash, and made the roads near the volcano impassable. Residents of destroyed villages fled to Naples or to nearby towns such as Castellammare. The eruption was followed by heavy rains that produced what geologists now call a lahar (an Indonesian word)--massive mud-like slides of ash and water that buried everything in their path. The eruption created a heroic mythology around the persons of Matteucci and his US American associate, Frank A. Perret, who stuck to their stations in the observatory to gather data while hell raged around them. (Some sources reported at the time that it was the most massive eruption since the great explosion that destroyed Pompeii and Herculaneum in 79 AD. That may be an exaggeration, since the 1872 and the 1631 eruptions were likely to have been at least as powerful.) Matteucci's presence on the slopes during the eruption and his constant messages of reassurance to the population of Naples were credited with avoiding a general panic.

[See also: this New York Times article from 1906, praising Matteucci.] [See also this separate biography of Frank A. Perret.
[See also: this account of the 1906 eruption by Herbert M. Vaughan.]
[See also: this account of the eruption by L. Frank Baum, author of the Oz books, who witnessed the eruption with his wife, Maude, who then wrote her own book about their travels.]

There had been a few warnings of the strong 1906 eruption a few years earlier. In 1900 there was a "Strombolian eruption," that is, a strong but relatively low-level volcanic eruption with regular ejections of incandescent material to altitudes of tens to hundreds of meters. From the city of Naples at night, it was something like watching a pretty good fireworks display. That activity continued through 1903.


In the 1880s and 1890s there was constant visible volcanic activity on Vesuvius, small but enough to produce minor secondary cones and small lave flows. As in 1930, the period also contained a major earthquake, this one on the island of Ischia on March 4, 1881.


eruption of 1872
(photo: G. Sommer)              

The year 1872 produced a massive eruption classified as explosive/effusive. Somewhat earlier, in 1841, the geological observatory, itself, had been founded, right on the slopes. The institution was the brain-child of Macedonio Melloni (1798-1854), who became the first director. It survived the political upheavals that came with the conquest of the Kingdom of Naples (in 1860) and its absorption into the modern nation state of Italy. The directorship then passed to Luigi Palmieri (1807-96), who was on duty constantly during the 1872 eruption.You can see the observatory today and from a distance notice that it sits on a handy knoll with the lava flow of the '72 eruption going around it! There were even more scientific heroics as the director, Prof. Palmieri, refused to leave so he could man the instruments. Unlike Matteucci, later, Palmieri was totally cut-off and alone.

added Aug 2020 --as seen in 1872-- from Popular Science (then called The Popular Science Monthly,  founded in May 1872. This item is thus from the journal's very first year of publication and is from September 1872. It was timely since there was world-wide interest in the goings-on at Mt. Vesuvius in that period.

MEASUREMENT OF EARTHQUAKE-WAVES.
By GEORGE FORBES

WHILE the scientific world and his own countrymen are rivals in doing honor to Prof. Palmieri for his zeal in remaining at his post in spite of all danger, it may be interesting to examine in some detail the work done at the Observatory of Mount Vesuvius. We know wonderfully little about the origin and mutual dependence of volcanic phenomena. This is due to a want of accurate observations. For the complete investigation we require first to know at what dates earthquakes and eruptions occur at different parts of the earth. Next we must have observations of the direction and exact hour at which a wave of disturbance passes different places whose positions are known. This gives us the velocity of the wave, and helps to determine the position, under the earth's surface, of the centre of disturbance; or, if a wave be propagated over the sea, we obtain a means of estimating the average depth of the intervening ocean; for the velocity of a wave increases with the depth of the sea. This method gives one of the best determinations we possess of the depth of the Pacific Ocean. But beyond this we must have observations made systematically at some place subject to earthquakes and volcanic eruptions. No place in Europe is more suitable for this than the neighborhood of Mount Vesuvius; and it was for such observations that an observatory was established there.

Every one knows that Mount Vesuvius consists of a vast cone of lava and ashes, at the top of which is the great crater. On the northern side, separated from it by the deep valley called the Atrio del Cavallo, rises the precipitous and semicircular Monte Somma. This once formed the crater of the volcano, and the present cone seems to have been formed inside that great crater at the time when Pompeii was overwhelmed. On a spur of rock, a mile or two in length, running down from the Atrio del Cavallo, the Observatory is placed. It is close to the well-known "Hermitage," or half-way house, in the ascent of the mountain. Being raised on this ridge above the surrounding country, it is comparatively safe from the molten lava that flows at times on either side of it.


The building itself is handsome; in fact, it is to be regretted that so much money should have been devoted to the masonry instead of to additional instruments. On the ground-floor are the inhabited rooms, all scantily furnished; but the pursuers of science cannot always expect bodily comfort. On the first floor we find the Museum, with a fine collection of minerals found on the mountain. Perhaps it may be as well here to correct the common mistake as to the nature of the yellow substance found about the craters, whose brilliant colors remind one so much of the Solfatara. This substance is not sulphur, but copper. The most interesting objects in the Museum are the "fumerolles," [sic] or smoke-holes. Occasionally at the end of an eruption you may see at the bottom of the crater a small cone of lava, with a hole in its top, through which the steam pours with a hissing noise like a wave breaking on a pebbly beach, or like a blast-furnace, or, as Pliny has it, like the grinding of a saw; the intensity of the sound varying with your position. These small cones are the fumerolles; they are a foot or two high; and Palmieri has actually had several of these natural chimneys cut off and transported to the Museum.


We now pass on to the Observing-Room. There are solid piers carried up from the ground to support the instruments. First comes the elegant seismograph, an instrument for the automatic registration of earthquake-shocks. The object of the instrument is twofold: first, to measure the direction and intensity of a shock; and, second, to write down a history of the earthquake. The shock may be either vertical or horizontal, or partly vertical and partly horizontal. For the vertical shocks a fine metallic point is suspended by a coil of wire over a cup of mercury. The coil of wire acts as a spring, and the slightest upward motion of the earth is sufficient to cause the point to dip into the cup of mercury. This completes a galvanic circuit, which stops a clock at the exact half-second at which the shock occurred, and rings a bell to call the observer, and also does other work which we shall speak of again. There are three or four helices of wire of different strengths, which support small magnets above a cup of iron filings. When a vertical shock occurs, some of these magnets dip into the iron filings. To one of these a light index is attached, for measuring the intensity of the shock.


For horizontal shocks there are four glass tubes. Each of them is bent twice at right angles, so as to form a U-tube. One arm of this tube has more than double the diameter of the other, and is shorter. The four tubes point in the directions of the four cardinal points. Each tube has a certain quantity of mercury poured into it, and on the surface of the mercury, within the narrow arm of the tube, there rests a small weight attached to a silk fibre, which passes over a delicate ivory pulley, and has a counterpoise attached at the other end. Each pulley has an index and circular scale to mark the angle turned through. The extremity of a wire is fixed at a small distance above the surface of the mercury in each tube. If, then, a horizontal shock occur, the mercury rises in the corresponding tube; but it rises higher in that one which has its long arm to the north. The pulley is turned through a certain angle, which is measured by the index, and at the same time the mercury in rising comes in contact with the fixed wire, and so completes a galvanic circuit which rings a bell, and stops the clock at the exact half-second when the shock occurred. If the shock comes from some intermediate point, two of the indices will be moved, and the direction and intensity can be measured by observing both of them. We have seen up to this point that the instrument will measure the direction and intensity of a shock, will mark the time at which the shock occurred, and will ring a bell to attract the attention of the observer on duty, who may register succeeding shocks, or, if the earthquake has ceased, may reset the apparatus. But this is not all. The galvanic circuit, which is completed at the moment a shock occurs, releases at the same instant the pendulum of a second clock, which has been held out of the vertical by means of a detent. This clock allows a roll of paper to be unwound off a drum, as in any registering telegraph, at the rate of three metres an hour. A pencil rests nearly in contact with the strip of paper. It is connected with one arm of a lever, the other arm of which is slightly distant from an electro-magnet. As often as the current passes, this end of the lever is attracted to the magnet, and the pencil in consequence is made to press on the paper, to be released only when the current ceases. By this means, then, a continuous history of the earth's trembling is registered, a pencil-mark corresponding to a time of trembling, and a blank space to a period of cessation.


This instrument is extremely delicate, and registers motions of the earth which are too slight to be perceptible to the human frame. When we examined it, some one happened accidentally to touch the casing of the instrument. The alarm was immediately given by the bell, and the two clocks were respectively checked and put in motion by the galvanic current.


In the same room there is apparatus for detecting and measuring atmospheric electricity. A gold-leaf electroscope and a bifilar electrometer are observed regularly. These are successively put in connection with the conductor. This consists of a disk of metal above the roof of the house connected with an insulated metallic rod, supported vertically, and capable of being rapidly raised by means of a cord passing over a pulley. When not in use this rod is in connection with the ground. In making an observation, the rod with the disk attached is quickly raised, thereby disconnecting it from the ground. The electricity of the atmosphere at the point where the disk is fixed affects the electroscope and electrometer. Prof. Palmieri prefers the conductor above described, to a conducting point or a flame, because he considers that these do not give comparable results, an objection which is not supported by all observers. He considers the same to be true of the method of dropping water.


After having made careful observations on atmospheric electricity for about a quarter of a century in a country where meteorological changes are more regular and less capricious than in our own island, there is no one whose deductions are more deserving of our attention; the more so as he considers that he has combined his researches into a definite law. His first fact is this: If within a distance of about fifty miles there is no shower of rain, hail, or snow, the electricity is always positive. The single exception is during the projection of ashes from the crater of Vesuvius. During a shower he finds the following law universally to hold good: At the place of the shower there is a strong development of positive electricity; round this there is a zone of negative, and beyond this again positive. The nature of the electricity observed depends upon the position of the observer with respect to the shower, and the phenomena will change according to the direction in which the shower is moving. Sometimes negative electricity may be observed during a shower; but this is always due to a more powerful shower farther off. These conclusions have been supported by means of telegraphic communication with neighboring districts. It appears, then, that except when the moisture of the air is being condensed, there is no unusual development of electricity. These, results are in accordance with the experiments of Palmieri and others, which show that aqueous vapor in condensing develops positive electricity. No unusual development of electricity has ever been detected by him in a cloud when no rain is falling.


The above results, though falling short of what has to be done to complete the theory, are yet definite, and hence valuable, the more so if supported by other observers placed in equally favorable situations. But of the variations in intensity of positive or negative electricity nothing has been said.


Besides the fixed instruments at the Observatory, others are used on the mountain. Gases are collected from cracks in the earth's crust, tubes being let down into them, and the gas sucked up by a kind of bellows, to be examined at leisure. A portable spectroscope is also used during eruptions, and there is a larger one by Hoffman in the Observatory. From this Observatory we have received valuable information, and it is much to be regretted that equally efficient observatories have not been established in different parts of the world. Many portable and cheap instruments have been invented, most of which are described by Mr. Mallet, in the "Admiralty Manual of Scientific Inquiry;" but there ought to be three or four as delicate as that on Mount Vesuvius. It is a pity that no observatory has ever replaced the ancient one of Empedocles, near the summit of Etna, or even at Nicolosi, where the valuable services of Dr. Gemellaro might have been obtained. This would have been the more interesting, as Palmieri can detect shocks caused by that volcano, though the distance is enormous. With a third observatory, say in the Philippine Islands, we could not fail to increase our knowledge enormously.


From long practice Palmieri is able to predict eruptions. We remember well, when we were enjoying his hospitality at the beginning of last year, how he said, "This is a small eruption, but there is going to be a great one; I do not say it will be soon, it may be a year, but it will come." In almost exactly a year the great eruption did come.—Abstract from Nature.

Eruption in 1822 (painting: Camillo De Vito, shown right)        


The 1850s had constant activity, more Strombolian than explosive, but enough to cause lava to flow, secondary cones to open and artists to paint. The same can be said for the eruption of 1839 and other smaller events in that decade. There is, again, constant activity back to the turn of that century, including a major eruption in 1822 (image, right); in the 1700s, there were at least three notable eruptions: 1707, 1737, and 1794, all of which destroyed local villages. As well, there were weaker eruptions in the 1750s and 1760s. The 1794 eruption opened craters at relatively low levels on the slopes at 480 and 320 meters. (The current height of Mt. Vesuvius is 1280 meters.)

below: the 1821 eruption of Vesuvius.
Illustration from Il Bel Paese by Antonio
Stoppani, published in 1876.
The modern cycle of eruptions of Mt. Vesuvius started Dec. 16, 1631 with an eruption classified as explosive (as opposed to the less violent effusive or explosive/effusive). The volcano had been quiet for some centuries and then simply blew its top. Most sources cite this eruption as the greatest since Pompeii. It followed the familiar behavior of an exploding volcano: lava fountains as high as 4 km and an ash column as high as 15 km, which then collapsed onto the slopes producing what is now called a pyroclastic flow. It was followed in 1637, '49, '52, '54, and '60 by lesser eruptions. Some of those were accompanied by earthquakes; indeed, even the dreaded bubonic plague showed up in 1656, lending credence amongst believers to the rumor that the world was coming to an end. It didn't, of course, and it won't after the next one. (My friends--the people in those houses in the top photo--tell me that I should really be quiet and, especially, should delete those last few words.)



By agreement, then, we stop at the 1631 eruption, a harbinger of the active 300 years to come. But perhaps one item from before that is of interest. One of the most interesting and iconic statues (photo, right) in the city of Naples is the Fountain of Spina Corona. It is a marble representation of an angelically winged siren, Parthenope, the eponym of the original city, above Vesuvius. She is pressing her breasts to direct the streams of water/milk onto the flames of the volcano to extinguish them. The work bears the Latin inscription Dum Vesevi Syrena Incendia Mulcet [While the siren of Vesuvius calms the flames]. That may be a pun in Latin since the Latin infinitive mulcere--besides meaning to calm or caress--can also mean to soften, as in to make metal soft, and Mulciber is, in fact, one of the nicknames of Vulcan, the Roman god of the forge, guardian of fire, and source of the word volcano. So she is 'mulceting' the 'mulciter'. That's funny. So is the fact that she seems to have the legs of a chicken; I don't know why, but I'm sure it's complicated.


Some sources say, simply, that the statue was done at the behest of Spanish Viceroy Don Pedro de Toledo around 1550, and some from the 1600s even claimed that the siren putting out the flames of the volcano was intended to represent the way Toledo had extinguished the fires of potential revolution. Be that as it may, there are references to the statue from the 1400s, so it couldn't have been Toledo's idea, no matter what people wanted to read into it later on. Most opinion is that it is from the Aragonese period in the 1400s and the Spanish effort around 1550 was a remake. That remake was overseen by Giovanni da Nola (1488-1558), one of the great names of the Italian Renaissance. He worked principally in Naples. His altars, sepulchers, and monuments are found in many of the great churches in Naples; he also built a number of the city's monument fountains from the 1500s.

The fountain has recently been restored and is located outside the church of Santa Caterina della Spina Corona, not far from the Fredrick II university in what used to be the Portanova section of the city. The church, itself, goes back to 1354 when it was built as an annex to a Benedictine monastery and, in its long history, has even been a synagogue. The original statue of winged Parthenope is in the National Museum. The restored fountain uses an exact replica by Achille d'Orso, the prominent Neapolitan sculptor from the early 1900s. In popular and not totally unexpected vulgar parlance, the work is also referred to locally as la fontana delle zizze (The Fountain of the Tits).

Finally, the current period of calm on Vesuvius
no visible activity since 1944 (although "events" such as rumblings and movement are detected by instruments)has been the longest in centuries. Maybe the restoration of the statue is working.

[Also see "Geology of the Bay of Naples."]

                  to science portal                    to top of this page


 © 2002 - 2023